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1. Introduction 
 

Machine Learning has been a game-changer across various industries, thanks to its ability to provide 

accurate predictions. However, in the healthcare sector, high accuracy alone is not sufficient as a single 

metric can only offer a partial answer to a question. Metrics can only tell us "what," but not "why," 

making interpretability and explainability crucial for the adoption of machine learning models in 

healthcare. Current machine learning approaches to diagnosis are purely associative, with diseases being 

identified by their association with particular symptoms, rather than a causal relationship with specific 

factors. Failure to establish causal relationships may result in suboptimal decisions or unintended 

consequences. 

To address this issue, we aimed to leverage interpretable machine learning (IML) methods, namely 

SHAP and Skater, in our research to extract the interpretation for each classification model. The goal 

was to make the model more understandable, supporting physicians in diagnosing cervical cancer. We 

sought to explain how each algorithm works, identify the most critical risk factors relevant to malignant 

cervical formation, extract causal relationships between features and outcomes, and discuss the trade-

offs to consider when deciding which algorithm to implement. We chose to focus on cervical cancer 

diagnosis due to its significant impact on women's lives. It is the fourth leading cause of death among 

women globally. Although early screening tests such as the Pap test and HPV DNA test have made 

cervical cancer a preventable disease, screening resources remain inaccessible and unaffordable to 

women in developing countries. If we can build an algorithm that guarantees a decent level of accuracy 

in identifying cervical cancer patients and extracting the most critical factors or causal relationships from 

the model, we may be able to develop a new digital screening solution to make the screening more 

accessible for women in areas with scarce healthcare resources. 

2. Background 
 

Interpretability is not the same as explainability, as noted by Molnar (2022) and Miller (2018). Molnar 

(2022) defines interpretability as the associations a machine learning model identifies between features 

and output, or the "extraction of relevant knowledge from the model." It describes the extent to which 

one can predict what will happen given a change in input or algorithmic parameters. Explainability, on 

the other hand, pertains to the internal mechanisms of machine learning models and explains why a 

certain prediction was made (Gall, n.d.). In some cases, simply obtaining the prediction is insufficient. 

The model must also explain how it arrived at the prediction, particularly when the model affects human 

life. 

Furthermore, machine learning models can only be debugged and audited when they are interpretable. 

An interpretable machine learning model ensures the fairness of the algorithm and prevents 

discrimination against underrepresented groups. It also ensures the model's reliability, where small 

changes in input do not lead to significant changes in predictions, and the model's adoptability, making 

it easier for humans to understand and implement. 



Despite the progress made in developing interpretable machine learning (IML) methods, they still have 

some major limitations, as Molnar (2022) notes in his book on the subject. For instance, feature 

dependence can create issues with attribution and extrapolation, causing partial dependence plots to 

generate fictitious data points not found in the actual data distribution. As a result, IML methods may 

be unable to capture the true association or causal relationships in the models they aim to interpret. 

Another significant issue with current IML methods, as Molnar points out, is the lack of statistical rigor. 

Unlike traditional statistical methods, most IML methods do not provide confidence estimates, and there 

is no universal standard for evaluating the different interpretations of the same machine learning model 

using different IML methods. 

2.1 Why is Causal Inference Important in Healthcare? 

Given that machine learning algorithms can make accurate predictions, why do we need causal inference 

in healthcare? The main reasons are as follows. 

Reason 1. Causal structures will affect healthcare decisions  

Simpson’s paradox is a statistical phenomenon where an association between two variables in a 

population emerges, disappears, or reverses when the population is divided into subpopulations 

(Simpson, 1951). A real-life example of Simpson's Paradox comes from a medical study that examined 

two kidney stone treatments and how effective they were for stones of various sizes (Charig et al., 1986). 

One of the treatments was a less invasive new treatment; the other was the current treatment. 

 

  Treatment A  

(Current Treatment) 
Treatment B  

(New Treatment) 

Small Kidney Stones 93% (81/87) 87% (234/270) 

Large Kidney Stones 73% (192/263) 69% (55/80) 

Aggregated 78% (273/350) 83% (289/350) 

Table 2.1.1. The recovery rate of current treatment versus new treatment.  
The success rate, expressed as a percentage, is accompanied by the ratio of the number of recoveries to the total cases in 

parentheses. This information is adapted from the study "Comparison of treatment of renal calculi by open surgery, 

percutaneous nephrolithotomy, and extracorporeal shockwave lithotripsy" by Charig et al. (1986) in the British Medical Journal 

(Clinical research ed.). 

 

Comparing the effectiveness of two treatments regardless of the size of the stones by looking at the 

aggregated result, it is clear that treatment B is more effective. However, when the population is subset 

based on the size of the stones, the conclusion is reversed. Treatment A works better for both small 

kidney stone groups and large kidney stone groups. Since the two conclusions derived from the 

aggregated result and the subset result contradicts, in considering which conclusion to trust, we need to 

understand the underlying causal structure of the treatment and the outcome. 

The contradictory results led the research team to delve deeper to understand what caused the success 

rate to reverse. The research team found that the probability of treatment choice varied according to the 

diameter of the stones between the two treatment groups. From the above table, we see that the number 



of patients with large kidney stones in the treatment A group is much higher than that in the treatment B 

group given that the sample size of the two treatment groups is the same, which indicates that the 

outcome of treating patients with a more severe condition has a bigger impact on the overall treatment 

outcome of treatment A group while the treatment outcome of patients with a mild condition largely 

determined the outcome of the treatment B group. 

The biased treatment assignment unveiled a hidden confounding factor, condition, in the underlying 

causal structure (Figure 2.1.1) of the treatment choice problem. With this causal structure, to evaluate 

the direct impact of treatment A and treatment B on the recovery rate, we need to break off the causal 

relationship between condition and treatment by comparing how two treatments perform in treating 

patients with similar levels of illness. This leads us to the conclusion; treatment A is more effective than 

treatment B in a scenario with this causal structure (refer to causal structure 1 in Figure 2.1.1). 

With a clear underlying causal structure of a problem, the optimal decision seems to be intuitive. 

However, healthcare problems are much more complicated than the example we mentioned above. 

Sometimes, there could be more than one causal structure underneath a problem. Imagine another layer 

of complexity to consider when making the aforementioned treatment decision. Will we still make the 

same decision if the availability of treatment A is much scarcer than treatment B and the timing of 

receiving treatment will largely affect the treatment outcome (refer to the causal structure 2 in Figure 1)? 

With an additional layer of causal structure, the decision is more complicated as we need to weigh the 

level of impact of the treatment and the timing of receiving treatment on the recovery to make the final 

decision. Different causal structures will lead to completely different healthcare decisions. 

 

    

              Causal Structure 1                             Causal Structure 2 

Figure 2.1.1 Two distinct causal structures 

Reason 2. Poor model generalizability 

Machine learning can predict accurately if models are trained on a large amount of data. However, 

insufficient data is one of the biggest challenges faced by healthcare since the healthcare data usually 

include Personal Identifiable Information and are strictly regulated. Training machine learning models 

with insufficient amounts of data will lead to poor generalizability of models and cause inconsistent 

prediction results, making a machine learning model unreliable. 

 

When applying machine learning to address medical problems, there are a few things we need to look 

after. First, healthcare data tends to have selection biases. Only those who get healthcare services are 

included in healthcare datasets. Thus, datasets usually cannot represent the overall population. Secondly, 

even if we eliminate selection biases with randomized controlled trials (RCTs), the imbalance between 

samples with positive outcomes and negative outcomes remains to be an issue. The main challenge with 

the imbalance problem is that smaller classes are often more informative, but classification models tend 



to focus heavily on huge subgroups and ignore smaller subgroups (Ramyachitra & Manikandan, 2014). 

In this case, causal inference can help extract the true associations between features and outcomes. 

3. Methods 
 

3.1 Classification Models 
 
 

Classification models such as Machine Learning, Neural Networks, and Causal Inference can be utilized 

for various applications. In our study, we employed several machine learning models, including KNN, 

Decision Tree, Random Forest, and Ensemble Model. We began by using KNN, Decision Tree, and 

Random Forest to predict classifications. Afterwards, we combined these three models through the 

implementation of an ensemble model. For this experiment, we leveraged Scikit-Learn, a Python library 

specialized in tensor computation. Those interested in the code implementation can refer to /ml-

research/codes/01_KNN_DT_RF_V2.ipynb for further details. 

K-Nearest Neighbor – K-Nearest Neighbor (KNN) is a supervised learning algorithm that is widely 

used for classification and regression tasks. This algorithm functions by classifying data points based on 

their feature similarity. Specifically, KNN identifies the K closest points to a given point and selects the 

majority vote result of these K points as the classification for that point. During the testing phase, KNN 

calculates the distance between the test data and each row of training data, identifying the K closest 

points based on the chosen distance calculation method. The algorithm then assigns a class to the test 

point based on the most frequently occurring class of these K rows. This approach has been described 

in detail by Taunk et al. (2019). 

Decision Tree – Decision Tree is a supervised machine learning algorithm that can be utilized for both 

classification and regression tasks. According to Machine Learning with Python (n.d.), decision trees 

function by segmenting the target data into hierarchical tree-like structures with decision boundaries. A 

key advantage of decision trees is that they are non-parametric, meaning that they can efficiently analyze 

complex and large datasets without the need for complicated parameters. As noted by Song & Lu (2015), 

this feature makes decision trees a highly effective tool for data analysis. 

 

Random Forest – Random Forest is another powerful supervised machine learning algorithm that can 

function as a classifier or regressor. According to Machine Learning with Python (n.d.c), Random Forest 

is an ensemble machine learning method that creates multiple decision trees by sampling data and then 

utilizes a voting approach to determine the best machine solution. This ensemble approach helps to 

mitigate overfitting and enables the results to be averaged by means of sampling and voting. The 

effectiveness of this approach makes Random Forest a popular tool in various fields of data analysis. 

 

Ensemble Model – Ensemble Model is based on the concept that while a single model may predict a 

specific dataset with reasonable accuracy, combining different models can potentially enhance overall 

accuracy. In our study, we utilized a Voting Classifier from Scikit Learn (n.d.). This classifier combines 

conceptually distinct machine learning classifiers and utilizes a majority vote or the average predicted 

probabilities (soft vote) to predict class labels. This approach is particularly useful when dealing with a 

set of equally well-performing models, as it can help to balance out their weaknesses and achieve better 

results.  

 

Neural Network – In addition to the models discussed above, we also employed a neural network-based 

classifier in our comparison study. Neural networks, also known as multi-layer perceptron (MLP), 

simulate the signal propagation mechanism between neurons in the brain using various mathematical 



formulas such as affine and activation functions (Han et al., 2018). The model is trained by updating the 

weights and biases of each function through forward and backward propagation processes using 

differential functions. For our experiment, we implemented an MLP with three hidden layers, each with 

256, 128, and 64 neurons, respectively. The final layer utilized a softmax function to generate a binary 

discrimination probability. To enhance the accuracy of the training process, batch normalization and 

dropout functions were added to each layer (Ioffe & Szegedy, 2015; Srivastava et al., 2014). The model 

was trained using the minibatch method (Li et al., 2014), with a batch size of 32, and the number of 

training sessions and epochs were set to 30. We implemented the model using PyTorch, which is one of 

Python's libraries specialized for tensor computation. The relevant code for this experiment is available 

in /ml-research/codes/02_NeuralNetwork_CervicalCancerClassification_DI.ipynb and should be 

referred to as necessary. Overall, the neural network-based classifier proved to be a valuable addition to 

our comparison study, and its implementation using PyTorch provided robust and reliable results. 

 

3.2 Causal Inference Models 
 
 

The last model tested was the causal inference model, specifically a Bayesian network developed in the 

1980s for exploratory data analysis by Pearl (1985). From several causal inference models, we selected 

the fast causal inference (FCI) algorithm (Spirtes, Meek & Richardson, 1995). The FCI algorithm is a 

constraint-based non-parametric approach that explores a graphical feature common to all causal-

directed acyclic graphs (DAGs) to observationally equivalent sets of statistical tests of conditional 

independence. Essentially, it identifies dependencies between variables by connecting variables that are 

purely dependent on each other with a causal edge, after excluding the influence of different and 

unobserved variables. This algorithm has several advantages, including being less susceptible to 

identified causal relationships being affected by increases or decreases in other variables and being able 

to generate correct identification probabilities even in the presence of hidden variables like covariates 

or a mixture of factors that could negatively affect the model, such as selection bias. Exploratory data 

analysis often involves unobserved covariates, which can make causal inference challenging. To 

implement the FCI algorithm, we used a Java desktop application called Tetrad, developed by professors 

in the Philosophy Department at CMU (Cmu-phil/tetrad, 2022). The results are stored in /ml-

research/codes/03_causal_inference and should be referred to as necessary. To access the "Causal 

Analysis_Cervical Cancer.tet" file, you can download it from the "tetrad-gui-7.1.0-launch.jar" file in the 

same directory. Then, start the file and select "File > Open Session" from the menu to load the 

downloaded file. 

 

3.3 Dataset 
 

For this research project, we utilized a structured dataset provided by the UCI Machine Learning 

repository that included historical medical records of 858 cervical cancer patients. The dataset 

encompassed various explanatory variable categories, such as patients' demographics and habits, 

including age, sexual intercourse habits (including the number of sexual partners and the age at which 

they had their first sexual intercourse), pregnancy history, smoking habits (including whether or not the 

patient smokes, the number of years they have smoked, and the number of packs of tobacco they 

consume per year), contraceptive habits (including whether the patient uses hormonal contraceptives or 

an intrauterine device (IUD) and how long they have used these contraceptives), and sexually transmitted 

disease (STD) history (including whether the patient has ever had an STD, the number of STDs they 

have had, the amount of time since their first STD diagnosis, and the amount of time since their most 

recent STD diagnosis). Additionally, the dataset contained diagnosis information related to cervical 



cancer, including whether the patient has cancer, cervical intraepithelial neoplasia (CIN), or cervical 

intraepithelial neoplasia (HPV). 

 

However, missing values existed in the dataset as some patients did not provide answers to specific 

questions. To address this, we replaced the missing values with either the mean or median value, 

depending on the specific variable. We limited the use of continuous variables to those that hold more 

information to avoid negative impacts on classification results. After filtering the explanatory variables, 

we selected 13 variables for the discriminant model. 

 

The target variable for this research project was the result of biopsy diagnosis. Our objective was to 

identify the variables that had a significant impact on biopsy diagnosis by using general classification 

models and neural networks. To ensure a causal inference, we needed to verify that the sample 

distributions across different features were similar in both the positive and negative biopsy groups. By 

doing so, we were able to determine that any observed differences in the outcome were not due to 

differences in the sample characteristics. This allowed us to make a causal inference and identify the 

variables that had a significant impact on biopsy results. Even though a propensity score comparison is 

crucial in determining whether causal inference is feasible or not, we did not perform it in this study as 

the distributions were found to be comparable. However, for future reference, the relevant code for 

conducting a propensity score analysis is available in the /ml-research/codes/03_causal_inference/03-

01_Feature distribution.ipynb file. 

 

3.4 Sampling Methods 
 

The Imbalanced-learn (Imblearn) library offers a range of tools that can help balance the proportion of 

data with different classes by either up-sampling the minority class or down-sampling the majority class 

(Dwivedi, 2020). Oversampling involves adding more samples from the class with fewer data, while 

under-sampling randomly removes some samples from the majority class to achieve a balance between 

the two classes in quantity. You can find visual representations of these techniques in Figure 3.4.1. 

 

  

Figure 3.4.1. Oversampling and undersampling Method 

 

3.5 Evaluation Methods 
 

Healthcare decisions are critical and can have significant impacts on patients, physicians, and hospitals. 

From the patients’ and physicians’ perspectives, false positive cases can be costly, and from hospitals’ 

perspectives, high false positive rates can result in a waste of healthcare resources. Therefore, when 

designing machine learning models for healthcare settings, accuracy should not be the sole evaluation 

metric. Instead, we need to consider different stakeholders’ interests and strike a balance between false 



positive and true positive rates. For our research, we chose AUC as our evaluation standard while 

selecting parameters and drawing conclusions. 

 

Various evaluation methods exist for classification models, including Accuracy, Precision, Recall, and 

AUC (Area under the ROC curve). The confusion matrix is used to describe the performance of a 

classification model. While choosing our evaluation metric, we considered the importance of balancing 

the interests of different stakeholders in healthcare decision-making. Therefore, we selected AUC as our 

evaluation metric, given its ability to evaluate the performance of a model across all possible thresholds. 

 

The accuracy metric calculates the proportion of correct predictions out of the total number of 

predictions. 

 

 

 

 

 

Table 3.5.1. The components of a confusion matrix 

 

Precision refers to the proportion of correct identifications among the total number of positive 

identifications. 

 

Recall measures the proportion of actual positive cases that were correctly identified by the model. It 

is equivalent to the True Positive Rate (TPR). 

 

Receiver Operating Characteristic (ROC) – The Receiver Operating Characteristic (ROC) curve is 

a graph that shows how well a classification model performs at all possible classification thresholds. It 

plots two parameters, the True Positive Rate (TPR), which is equivalent to Recall, and the False Positive 

Rate (FPR). (Google Machine Learning Education, n.d.). 

 

The ROC curve plots TPR versus FPR at various classification thresholds, and the area under the curve 

(AUC) measures the trade-off between TPR and FPR. It provides an overall performance measure 

across all possible classification thresholds (Google Machine Learning Education, n.d.). 



 

Permutation Feature Importance / Shaley Value – After evaluating the performance of the machine 

learning models using AUC and TPR, we conducted permutation feature importance to further assess 

their interpretability. Permutation feature importance (PFI) is a commonly used evaluation method for 

interpreting machine learning models. According to Fisher, Rudin & Dominici (2019), PFI can estimate 

the importance of variables in any model by calculating the upper and lower limits of model class 

reliance (MCR) as point estimates. In this experiment, we applied PFI to three models: KNN, decision 

tree, and random forest, using the skater library developed by Oracle Open Source. 

However, skater is not compatible with PyTorch, which is the neural network library we used for this 

experiment. Therefore, we employed an alternative method to interpret the neural network model, by 

calculating the average Shapley value of each variable to determine the global model interpretation, i.e., 

the contribution of variables to the overall model. Our objective was not to compare the importance of 

variables but to determine which variables the model relied on to make predictions. Despite using 

different interpretable machine learning models (Skater and SHAP) to interpret general classification 

models, the objective of these two methods remained the same. 

4. Experiment Results 
 

The dataset consists of 858 patients' historical medical records, including their demographics and habits. 

Out of these, 55 patients tested positive, while 803 patients tested negative, resulting in an imbalanced 

dataset. We applied KNN, decision tree, and random forest models to the original dataset. However, all 

models' performances were not satisfactory. To address this issue, we used under-sampling techniques 

and trained the models on a balanced dataset consisting of 44 positive samples and 44 negative samples. 

Table 4.2 presents the performance of the four models, with the Random Forest model showing the 

highest AUC and Recall. Meanwhile, the Decision Tree model achieved the highest accuracy among 

all the models. 

Table 4.1. Best Performance of three models trained on oversampling and undersampling datasets. 

 



Table 4.2. The performance metrics, including AUC, recall, and accuracy, of the KNN, decision tree, 

and random forest models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Confusion Matrix of the Four Models. 

 

To evaluate the models, we utilized the undersampled dataset and ran each model multiple times to 

determine the optimal parameters resulting in the highest AUC. Specifically, for KNN, k = 3; for the 

Decision Tree, the max depth was set to 3, and for Random Forest, n_estimators = 40 and max_depth 

= 34. After training each model, we combined them into an ensemble model using a soft voting strategy. 

The goal was to achieve the best performance among all the models. However, surprisingly, the 

decision tree outperformed the ensemble model in terms of AUC and Recall. When testing on a small 

dataset, only one out of ten patients was misdiagnosed. This result demonstrates that a more complex 

model does not always lead to the best outcome. 

 



 
Figure 4.2. Permutation Feature Importance 

 

Figure 4.2 illustrates the feature importance rankings for each model, revealing that age, hormonal 

contraceptives, and first sexual intercourse are the top three most significant factors in KNN, Random 

Forest, and the Ensemble Model. Hormonal contraceptives are also the second most important feature in 

the Decision Tree model. However, our results did not reflect the well-known strong correlation between 

Dx CIN and cervical cancer, indicating that general classification models may need assistance in capturing 

essential real-world features. 

 

In Figure 4.3, we present the results of the Neural Network experiment, where the true positive rate is 64.3%. 

Our primary objective was to identify the model's critical features, rather than creating a high-precision 

neural network model; thus, we will not delve into the details of the model's detection capability. 

Nevertheless, we can interpret it as a model with a certain degree of detection capability. In Figure 4.4, we 

explore the interpretation of the neural network model, which reveals that Hormonal Contraceptives (years), 

Age, Skomer (years), Number of Sexual Partners, and First Sexual intercourse are the top five crucial 

features in the model, respectively. These features' direct impact on cervical cancer is not intuitive, 

suggesting that the neural model can only capture the association between explanatory and target variables 

and does not capture causal relationships, similar to other models such as KNN, Random Forest, and the 

ensemble model. 

 



  

Figure 4.3. Confusion Matrix of Neural Network Model 

 

 
Figure 4.4. Feature Importance in Neural Network Model by Averaged Shapley Value 

 

Moving on, let's dive into the results of the causal AI experiment. Figure 4.5 displays the outcome of the 

FCI algorithm, which identified the causal relationship between variables. As shown on the right side of 

the figure, two variables - diagnosis of CIN and number of STDs - are causally related to the biopsy result. 

CIN refers to cervical intraepithelial neoplasia, an abnormal cell that can lead to cervical cancer, while 

STDs are a known cause of cervical cancer. It's easy to see why this result makes intuitive sense, but to get 

a more accurate understanding, we needed to delve deeper into the relationship between STDs and cervical 

cancer. 

 

To do so, we re-ran the FCI algorithm, this time including STD details as explanatory variables. Figure 4.6 

shows that genital herpes is another causal factor detected in positive biopsy results. Studies have shown 

that the probability of developing cervical cancer increases when genital herpes is transmitted along with 

other HPVs. Therefore, we can conclude that the risk factors for cervical cancer are a diagnosis of CIN and 

genital herpes in terms of causal relationships. These findings align with expert knowledge cited from 

trusted medical webpages, validating the accuracy of our results. 



 
Figure 4.5. Causal Directional Acyclic Graph with FCI and Continuous Variables 

 

 
Please note that while other sexually transmitted diseases (STDs) were included in the causal inference analysis, they were not 

found to have any significant causal relationships with the variables in the figure. Therefore, they have been excluded from the 

illustration. 

Figure 4.6. Causal Directional Acyclic Graph with FCI, Continuous Variables and STDs. 

5. Discussion & Conclusion 

In this study, we found that the ensemble model, particularly the Voting Classifier, did not perform better 

than the best model in the set of implemented models, which was the decision tree. This can be attributed 

to the mechanism of the Voting Classifier algorithm, which uses weighted average probabilities to infer 

the result. Although the ensemble model could perform better when each model accurately classifies 

multiple classes, in this case, where the target variable is binary, the ensemble model's classification 

results could be easily biased by the model with a bigger weight. As such, for binary classification 

problems, a simple non-ensemble model with higher accuracy may be more appropriate (Scikit Learn, 

n.d.). 

 



Furthermore, the interpretation results of all the trained models using interpretable machine learning 

(IML) methods were similar in terms of their permutation-based important features and averaged 

Shapley values. However, these important features may not capture the causal relationships inferred by 

the Causal AI algorithm (FCI algorithm), which considers probabilistic and conditional independence 

to extract causal dependencies (Spirtes, 2001). For instance, the causal inference algorithm identified 

"Dx CIN" and "STDs: genital herpes" as causes of positive biopsy, but neither of them was included in 

the important features of each model. This demonstrates that IML methods may not be able to derive the 

true causal relationships between features and target variables (Molnar, 2022). On the other hand, while 

causal inference algorithms have a powerful mechanism to detect causal relationships, discerning true 

causal relationships without expert knowledge can be challenging. Moreover, causal relationships are 

sometimes detected without a clear direction. Two approaches to deriving true causal relationships are 

verifying causal relationships extracted with AI algorithms with expert knowledge and incorporating 

expert knowledge into a causal AI algorithm to ensure correct causal inference. 

 

In conclusion, we make three key points. Firstly, the lack of statistical rigor and comparison standards 

are common drawbacks shared by existing IML methods, making it difficult to determine which 

interpretation to trust when different IML methods provide different interpretations of the same machine 

learning model. Secondly, identifying associations through interpretability is not equivalent to 

explaining causations identified by causal inference models. Lastly, to create more adoptable machine 

learning models, we need to consider different stakeholders' interests and explain prediction results to 

people from diverse backgrounds and varying levels of knowledge in medicine. To achieve 

explainability in machine learning models, we need to verify whether the causal inference was made 

correctly by incorporating expert knowledge in developing an explainable machine-learning model. 
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